Least Squares Support Vector Machine for Constitutive Modeling of Clay
Authors
Abstract:
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of SVM in large scale function approximation problems is limited during optimization. In this paper, least squares support vector machine (LSSVM) is proposed to simulate stress-strain relationship of clay. LSSVM is a robust type of SVM, maintains the good features of SVM and also has its own unique advantages. LSSVM offers an effective alternative for mimicking constitutive modeling of clay. The good performance of the LSSVM models is demonstrated by learning and prediction of constitutive relationship of Fujinomori clay under undrained and drained conditions. In the present study, three versions of LSSVM models are built by considering more history points. The results prove that the LSSVM based models are superior to Modified Cam-clay model.
similar resources
Partial least squares- least squares- support vector machine modeling of ATR-IR as a spectrophotometric method for detection and determination of iron in pharmaceutical formulations
Iron is an essential element used as supplement in different dosage-forms. Different time and expenditure-consuming methods introduced for detection and determination of elemental ions such as atomic absorption. In this research, two different and routine methods containing ATR-IR and atomic absorption were applied to define the amount of iron in 198 samples containing different concentrations ...
full textPartial least squares- least squares- support vector machine modeling of ATR-IR as a spectrophotometric method for detection and determination of iron in pharmaceutical formulations
Iron is an essential element used as supplement in different dosage-forms. Different time and expenditure-consuming methods introduced for detection and determination of elemental ions such as atomic absorption. In this research, two different and routine methods containing ATR-IR and atomic absorption were applied to define the amount of iron in 198 samples containing different concentrations ...
full textSparse least squares Support Vector Machine classifiers
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...
full textSparse Least Squares Support Vector Machine Classiiers
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case ...
full textMulticlass Least Squares Twin Support Vector Machine for Pattern Classification
This paper proposes a Multiclass Least Squares Twin Support Vector Machine (MLSTSVM) classifier for multi-class classification problems. The formulation of MLSTSVM is obtained by extending the formulation of recently proposed binary Least Squares Twin Support Vector Machine (LSTSVM) classifier. For M-class classification problem, the proposed classifier seeks M-non parallel hyper-planes, one fo...
full textFeature selection for least squares projection twin support vector machine
In this paper, we propose a new feature selection approach for the recently proposed Least Squares Projection Twin Support Vector Machine (LSPTSVM) for binary classification. 1-norm is used in our feature selection objective so that only non-zero elements in weight vectors will be chosen as selected features. Also, the Tikhonov regularization term is incorporated to the objective of our approac...
full textMy Resources
Journal title
volume 28 issue 11
pages 1571- 1578
publication date 2015-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023